If it's not what You are looking for type in the equation solver your own equation and let us solve it.
750=9t+4.9t^2
We move all terms to the left:
750-(9t+4.9t^2)=0
We get rid of parentheses
-4.9t^2-9t+750=0
a = -4.9; b = -9; c = +750;
Δ = b2-4ac
Δ = -92-4·(-4.9)·750
Δ = 14781
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14781}=\sqrt{1*14781}=\sqrt{1}*\sqrt{14781}=1\sqrt{14781}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-1\sqrt{14781}}{2*-4.9}=\frac{9-1\sqrt{14781}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+1\sqrt{14781}}{2*-4.9}=\frac{9+1\sqrt{14781}}{-9.8} $
| 1/x-2/3=3/2x | | 2p+18=12p-30 | | 4x+72=x^2+6 | | -15x+5=-20x+15 | | -15(x-1=-48-5x | | 27-c=11 | | c+14=41 | | 6x-14=6x | | (2x+5)(2x+8)=180 | | -10m-15+7m=12 | | 0.2x^2=13 | | 2x+9=-21-4 | | 5x+3=7x9 | | 50v=70 | | 90=9g | | 2x+3=7x9 | | 2x+4=5+15 | | 1/5c=8000 | | 25^(x+2)=5^3x-4 | | (32-2x)(24-2x)=128 | | 4(5x+1)=100 | | Y=3x2^2+1 | | X=9=2x+4 | | 5(x-10)=5x+20 | | (4/5)x+3=(2/3)x+5 | | 5x-12=-3x+8 | | 0.5x+4.5=12 | | 0.5x+4.5=13 | | 0.5x+4.5=1 | | 8x2+12=4x | | (x+90)7x=360 | | 12x-6x+5+4x=1-x+5 |